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Nociceptin produces antinociception after spinal administration in amphibians
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orphanin FQ, is a opioid-like neuropeptide that mediates its effects at the
nociceptin receptor, a member of the G protein-coupled receptor superfamily. In mammals, nociceptin
produces analgesia after spinal administration, however the role of nociceptin and nociceptin receptors in
the modulation of noxious stimuli in non-mammalian species has not been examined. In an amphibian pain
model using the acetic acid test with Rana pipiens, nociceptin and nociceptin1–13 amide produced dose-
dependent antinociception (1–100 nmol), blocked by the nociceptin antagonist, [Nphe1]-nociceptin1–13

amide (30 nmol), but not the opioid antagonist, naltrexone (100 nmol/g, s.c.). Conversely, the antinociceptive
effects of mu, delta, and kappa opioid receptor agonists were not blocked by the nociceptin antagonist.
Nociceptin and nociceptin1–13 amide were the least potent of the opioid agonists tested. These studies
demonstrate that spinal nociceptin receptors and not opioid receptors mediate the antinociceptive effect of
nociceptin. Considered with previous findings, these behavioral data supports a role for nociceptin inhibition
of spinal nociception in amphibians and perhaps all vertebrates.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Nociceptin (also called orphanin FQ) is a 17 amino acid neuropep-
tide found in brain extracts that was implicated in the modulation of
nociceptive transmission, along with other roles (Meunier et al., 1995;
Reinscheid et al., 1995). In concert with its name, nociceptin produced
hyperalgesia after intracerebroventricular (i.c.v.) administration to
mice (Meunier et al., 1995; Suaudeau et al., 1998; Zhu et al., 1997).
Conversely, nociceptin administered by the spinal route produced
analgesia (Wang et al., 1999a; Yamamoto et al., 1997). However, even
this difference in the effect of nociceptin explained by route of
administration was not consistent among all studies (Mogil and
Pasternak, 2001; Yamamoto et al., 1999). It is now thought that the
hyperalgesic effects of supraspinal nociceptin were due to reversal of
stress-induced analgesia and that nociceptin administered to the
spinal cord of mammals produces a classical analgesic response
(Lambert, 2008; Zeilhofer and Calò, 2003).

The pronociceptin precursor protein that yields nociceptin is
closely related to the family of endogenous opioid propeptides;
proopiomelanocortin, proenkephalin and prodynorphin. Pronocicep-
tin has similar gene structure (e.g. conserved intron/exon boundaries,
CYS residues and dibasic cleavage sites) as opioid peptide precursors,
especially prodynorphin (Darland et al., 1998; Henderson and
Mcknight, 1997; Meunier, 1997). Pronociceptin mRNA and nociceptin
immunoreactivity is localized throughout the CNS of mammals within
ces, 1111 W. 17th Street, Tulsa,
561 8276.
ns).

l rights reserved.
neuronal pathways that function in the processing of pain (Mogil and
Pasternak, 2001). Like endogenous opioid peptides, especially high
densities of both nociceptin markers are found in the dorsal horn of
mammalian spinal cord (Darland et al., 1998; Lai et al., 1997;
Pettersson et al., 2002; Schuligoi et al., 1997).

The receptor for nociceptin (NOP) was discovered before its
endogenous ligand (hence the orphan in its previous name and the
abbreviation, ORL) by low-stringency hybridization screening using
opioid receptor cDNA probes or by selective amplification of genomic
DNA using degenerate primers (Meunier, 1997; Mollereau et al., 1994).
The sequence of theNOP is homologouswith that of classicalmu (MOR),
delta (DOR) and kappa (KOR) opioid receptor proteins. Thus the gene for
NOP is the fourth member of the opioid receptor gene family. Cell lines
expressing NOP receptors display a high-affinity for nociceptin binding,
and binding of nociceptin to the NOP receptor stimulates the binding of
GTPγS, and activates a pertussis-sensitive Gαi/o signal transduction
pathway leading to inhibition of cAMP formation, a decrease in calcium
conductance and an increase inpotassiumchannel conductance (Dooley
and Houghten, 2000; Fawzi et al., 1997; Hawes et al., 2000; Ikeda et al.,
1997). The net effect of these intracellular sequelae is inhibition of
neurotransmitter release and neuronal activity. Thus, functionally as
well as structurally, the nociceptin receptor is homologous to the classic
opioid receptors by acting through similar signal transduction pathways
(Fawzi et al., 1997).With the exception of lofentanil and buprenorphine,
most opioids do not have appreciable affinity for the nociceptin receptor
(Bloms-Funke et al., 2000; Butour et al., 1997; Yamamoto et al., 2006;
Zaveri et al., 2001).

Since the original discovery of endogenous nociceptin, other peptide
analogs were synthesized including the agonist, nociceptin1–13 amide
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(Butour et al., 1997) and the antagonist, [Nphe1]-nociceptin1–13 amide
(Calò et al., 2000; Pheng et al., 2000; Xu et al., 2002). Nociceptin1–13
amide displaces tritiated nociceptinwith the same affinity as the native
peptide, nociceptin, in rat brain homogenates and after transfection of
NOP receptor in CHO cell membranes (Calò et al., 2002). Like nociceptin,
the agonist activity of nociceptin1–13 amide was shown by stimulating
the binding of GTPγS, and inhibiting cAMP formation, decreasing
calcium conductance and increasing potassium channel conductance
(Salvadori et al., 1999). The nociceptin antagonist, [Nphe1]-nociceptin1–
13 amide, also has a high affinity for the NOP receptor and the spinal
analgesic effect of nociceptin1–13 amide in rodent models (Butour et al.,
1997) was blocked by co-administration of [Nphe1]-nociceptin1–13
amide (Pheng et al., 2000; Xu et al., 2002).

To date, all of the behavioral studies of nociceptin were done using
mammalian species. Given the variable results on nociceptin effects in
mammals and for purposes of contributing data to a larger comparative
dataset on the pharmacology of opioids and vertebrate opioid receptor
proteins, the present study examined the pharmacology of nociceptin
following spinal administration in amphibians. The amphibian model
for assessing opioid effects is an alternative or adjunct model for pain
and analgesia research (Stevens,1992, 2004). Previous studies examined
the relative antinociceptive potency of non-selective and selective
opioid agonists after systemic, spinal, and supraspinal routes of
administration (Mohan and Stevens, 2006; Stevens, 1996; Stevens
et al., 1994, 2007b; Stevens and Rothe,1997). Non-opioid analgesics and
adrenergic agentswere also tested using the amphibianmodel (Brenner
et al., 1994; Stevens et al., 2001; Stevens and Brenner, 1996).

The present study examined the effects of nociceptin and
nociceptin1–13 amide following spinal administration in amphibians.
For comparison, the antinociceptive effects of the MOR agonist,
fentanyl (Janssen et al., 1963), the DOR agonist, [D-Pen2-D-Pen5]-
enkephalin (DPDPE; (Mosberg et al., 1983) and the KOR agonist,
U50488 (VonVoigtlander et al., 1983) were also tested. Finally, the
receptor selectivity of nociceptin's effect was examined by the use of
the non-selective opioid receptor antagonist, naltrexone, and the
selective NOP receptor antagonist, [Nphe1]-nociceptin1–13 amide.

2. Methods

All procedures were approved by the Institutional Animal
Use Committee (IACUC) and adhere to the National Institutes of Health
(U.S.A.) and the European Community guidelines on the use of animals
for biomedical research.

2.1. Animals

Northern grass frogs, Rana pipiens (Charles Sullivan, Inc., Nashville,
TN, USA) with a mean weight of 28 g were kept in groups of 48 in a
flow-through, stainless steel enclosure at room temperature with
running water after arrival. They were maintained with a 12-hour
photoperiod (lights on 0700) and were fed live crickets twice a week.
At least two days before experiments, animals were transferred to the
laboratory and placed in individual plastic pans with an adequate
amount of tap water. On the day of experimental study, water was
adjusted to a depth such that the dorsal surface of the frog's thigh was
exposed for testing. Baseline nociceptive thresholds (see below) were
obtained 2 h after the water level was adjusted on the morning of the
experiment and post-treatment nociceptive thresholds at 1 and 3 h
after drug administration. Previous studies of analgesics administered
by the intraspinal route in amphibians demonstrated that maximal
effects were obtained within this time period.

2.2. Drugs and drug administration

Naltrexone, fentanyl, DPDPE, U50488H, and nociceptin1–13 amide
were obtained from the National Institute on Drug Abuse, Drug Supply
Program (with generous assistance from Mr. Kevin Gormley of the
Research Technology Branch). Nociceptin was obtained from Bachem,
Inc. (Torrance, CA) and the antagonist, [Nphe1]-nociceptin1–13 amide,
was purchased from Tocris Cookson, Inc. (Ellisville, MO). Drugs were
mixed in saline to give nmol/µl solutions of the peptide or free base.
Spinal administration was done using a Hamilton microsyringe and
was made between the articulation of the lumbar vertebrate in a
volume of 5 μl (Stevens, 1996). Saline-injected control animals were
co-run with agonist and antagonist experiments, and there were no
significant changes from baseline values. The nociceptin antagonist
was given by concurrent spinal injection with the agonist using doses
determined in pilot experiments. For opioid antagonism experiments,
systemic naltrexone (100 nmol/g) or saline was administered 1 h
before the spinal administration of agonists. Systemic administration
was made by bolus injection into the dorsal lymph sac at a volume of
10 µl/g body weight (Stevens et al., 1994). Treatment groups consisted
of six to eight animals per dose. Each animal was used only once.

2.3. The acetic acid test for determining nociceptive thresholds in
amphibians

The acetic acid test to determine the nociceptive threshold (NT) in
frogs consists of eleven concentrations of acetic acid diluted in half-log
steps fromglacial acetic acid. The concentrations are given a codenumber
from 0 to 10 with the lowest code number equal to the lowest
concentration of acetic acid (Pezalla, 1983). Nociceptive testing is done
by placing, with a Pasteur pipette, a single drop of acid on the dorsal
surface of the frog's thigh. Testing begins with the lowest concentration
and proceeds with increasing concentrations until the NT is reached. The
NT is defined as the code number of the lowest concentration of acid that
causes the frog to vigorously wipe the treated leg. The nociceptive
responseof the animal is directlydependenton thepHof theacid solution
applied as the noxious stimulus (Hamamoto et al., 2000). To prevent
tissue damage, the acetic acid is immediately wiped off with a gentle
stream of distilled water once the animal responds or after 4 s. If the
animal fails to respond, testing continues on the opposite hindlimb. An
animal that fails to respond to the highest concentration (#10) is assigned
the cut-off of 11. Each NT determination consists of a single trial of the
acetic acid solutions. The acetic acid test was done to obtain baseline NT
before drug treatment and post-treatment NT at various times after
treatment. Baseline NT was obtained 30 min before drug administration.
The raw NT data (code number of acetic acid solution) was converted to
maximum percent effect (MPE) by the following formula:

MPE ¼ Posttreatment NT−Baseline NT
Cutoff value 11ð Þ−Baseline NT

� 100

MPE datawas plotted for treatment groups as the time course after
administration, and the maximum MPE value over that time course
was pooled from individual animals at the same treatment dose for
construction of dose–response curves. Pharmacological software
(Pharmacological Calculation Systems, PCS v. 4.0, MicroComputer
Specialists, Philadelphia, PA) was used to calculate the median
effective dose (ED50) and 95% confidence interval, the slope and 95%
confidence interval, and for statistical testing of the significant
differences between treatment groups. Antagonist datawere analyzed
by a one-way ANOVA followed by the post-hoc Newman–Keuls test.
Significant effects were considered at the pb0.05 level.

3. Results

3.1. Time course of nociceptin and nociceptin1–13 amide antinociceptive
effects

Nociceptin and nociceptin1–13 amide produced dose-dependent
antinociceptive effects over the 3 h time course with doses from 1 to



Fig. 1. Time course of the antinociceptive effect of nociceptin (NOC, panel A) or
noiceptin1–13 amide (NOC–NH2, panel B) after spinal administration. Doses were 1–
100 nmol/frog for nociceptin and 10–100 nmol/frog for noiceptin1–13 amide. N=6–8
animals per treatment dose and saline-injected controls.

Table 1
Analysis of nociceptin and opioid antinociceptive dose–response curves after spinal
administration in amphibians

Agent ED50
a 95% C.I.b Slope 95% C.I. R.P.c

Fentanyl 9.8 (6.7–14.1) 38.7 (23.8–53.7) 1.00
DPDPE 11.1 (5.93–20.80) 40.5 (13.7–67.2) 0.88
U50488 48.2 (20.9–111.5) 36.5 (7.0–65.8) 0.20
Nociceptin 211.3 (75.5–590.9) 18.5 (12.7–24.3) 0.04
Nociceptin1–13 amide 160.5 (7.9–3252.8) 22.4 (−12.2–56.9) 0.06

a In nmol/animal, spinal administration.
b 95% confidence interval.
c Relative potency compared to fentanyl by the ratio of the ED50 fentanyl/ED50 other

agent.
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100 nmol/frog (Fig. 1A, B). At 300 nmol/frog of nociceptin, hindlimb
dysfunction was noted in 4 out of 6 animals precluding assessment of
nociceptin effects at that high dose. Consistent with other analgesic
agents administered to amphibians, the antinociceptive effects lasted
at least 3 h, however the animals returned to normal nociceptive
thresholds the following day.
Fig. 2. Log dose–response curves of the antinociceptive effect of nociceptin and
noiceptin1–13 amide, and fentanyl, DPDPE, and U50488, after spinal administration in
amphibians. N=6–8 animals per treatment dose.
3.2. Relative antinociceptive potency of nociceptin and nociceptin1–13
amide

The dose–response curves of antinociceptive effect of nociceptin
and nociceptin1–13 amide following spinal administration in amphi-
bians is in Fig. 2. For comparison, the dose–response curves of the
selective MOR (fentanyl), DOR (DPDPE) or KOR (U50488) agonists
were also obtained. The ED50 values and 95% confidence intervals are
given in Table 1. Nociceptin and nociceptin1–13 amide had ED50 values
of 211.3 and 160.5 nmol/animal, respectively. The relative potency of
nociceptin and nociceptin1–13 amide was 0.04 and 0.06 compared to
fentanyl (set at 1.00). With the exception of nociceptin1–13 amide, all
agents had a significant slope (i.e. the 95% confidence interval of the
slope did not include 0) indicating dose-dependent responses. The
selective MOR opioid receptor agonist, fentanyl, was the most potent
agonist, followed by the DOR and KOR agonists; with nociceptin and
nociceptin1–13 amide the least potent.

3.3. Effects of naltrexone on nociceptin1–13 amide and fentanyl
antinociception

The effect of pretreatment with the opioid antagonist, naltrexone
(100 nmol/g, s.c.), on the antinociceptive action of fentanyl or
nociceptin1–13 amide is shown in Fig. 3. Saline or pretreatment with
Fig. 3. Naltrexone pretreatment blocks fentanyl but not noiceptin1–13 amide
antinociceptive effects in amphibians. Naltrexone was given by the systemic route
(NAL; 100 nmol/g, s.c.) 1 h before spinal administration of noiceptin1–13 amide (NOC–
NH2; 30 nmol/frog) or fentanyl (FEN; 15 nmol/frog). Asterisks indicate significantly
greater thresholds than SAL alone (⁎=pb0.05, ⁎⁎=pb0.01). Plus (+) indicates
significantly reduced thresholds (pb0.01) compared to FEN alone treatment group.



Fig. 4. Concurrent spinal administration of the nociceptin antagonist, [Nphe1]-
nociceptin1–13 amide (NpheNOC, 30 nmol/frog) blocks the antinociceptive effects of
nociceptin (NOC, 30 nmol/frog) but not fentanyl (FEN, 15 nmol/frog), DPDPE (D,
30 nmol/frog), or U50488 (U, 30 nmol/frog) in amphibians. Asterisks indicate
significantly greater nociceptive thresholds than SAL alone (⁎⁎=pb0.01). Plus (+)
indicates significantly reduced thresholds (pb0.05) than nociceptin (NOC) alone.
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naltrexone alone did not significantly affect the nociceptive threshold
in amphibians. Nociceptin1–13 amide (30 nmol/animal, i.s.) or fentanyl
(15 nmol/animal, i.s.) alone produced significant antinociceptive
effects. Pretreatment with naltrexone did not affect the antinocicep-
tion produced by spinal administration of nociceptin1–13 amide, but
significantly blocked the antinociceptive effect of fentanyl.

3.4. Effects of [NPhe1]-nociceptin1–13 amide on nociceptin and opioid
antinociception

The effects of concurrent spinal administration of the nociceptin
receptor antagonist, [Nphe1]-nociceptin1–13 amide, with nociceptin,
fentanyl, DPDPE, or U50488 is shown in Fig. 4. Spinal administration of
saline or [Nphe1]-nociceptin1–13 amide (30 nmol/animal) alone did
not significantly alter the nociceptive threshold in amphibians. The
nociceptin antagonist, [Nphe1]-nociceptin1–13 amide (30 nmol/ani-
mal) blocked the antinociceptive effects of nociceptin but not fentanyl,
DPDPE, or U50488.

4. Discussion

The present data are the first to show that nociceptin and
nociceptin1–13 amide produces significant antinociception in a non-
mammalian vertebrate species, the amphibian R. pipiens. Nociceptin
administered to the spinal cord of amphibians produced a dose-
dependent analgesic effect with an ED50 of 211 nmol/frog. Nociceptin
was a weak analgesic agent, only 0.04 times as potent as fentanyl.
Nociceptin 1–13 amide had a similar weak analgesic potency, although
the dose–response curve was too shallow to give a significant slope
(Table 1). Among the selective opioid agonists tested to date in the
amphibian model, the potency of nociceptin falls within the range of
most KOR opioid agonists (Stevens, 1996, 2004). This is not surprising
as the amino acid sequence of the nociceptin precursor, pronociceptin,
is most similar to prodynorphin, and among all vertebrate opioid
receptors, the NOP receptor sequence is most similar to that of the
KOR protein (Stevens et al., 2007a).

Comparison of the antinociceptive potency of spinally adminis-
tered nociceptin or nociceptin1–13 amide in amphibians to similar
studies in rodents is problematic due to the surprising lack of
published ED50 values. Additionally, previous studies did not directly
compare the relative analgesic potency of nociceptin with selective
opioid agonists. However, in mammalian studies where spinal
nociceptin produced an analgesic effect, the highest dose tested did
not produce as potent an analgesic effect as typically observed
following morphine or other opioid agonists (Candeletti et al., 2000;
Corradini et al., 2001; King et al., 1997; Ko et al., 2006; Nazzaro et al.,
2006; Wang et al., 1999a,b). The low potency nature of nociceptin and
nociceptin 1–13 amide has led to the search for more potent NOP
agonists (Gunduz et al., 2006).

The antinociceptive effects of spinal nociceptin in amphibians
were blocked by the concurrent administration of the NOP antagonist,
[Nphe1]-nociceptin1–13 amide. This is in concert with the results from
mammalian studies whereby the analgesic effects of nociceptin after
spinal administration were blocked by co-administration of [Nphe1]-
nociceptin1–13 amide in normal (Lu et al., 2001; Xu et al., 2002) and
neuropathic rodents (Corradini et al., 2001; Obara et al., 2005). The
non-selective MOR, DOR, and KOR opioid antagonist, naltrexone, did
not block the antinociceptive effect of nociceptin1–13 amide after
spinal administration in amphibians in the present study. Comparison
of these results with the mammalian literature is less convergent as
some studies report naloxone or naltrexone blockade of nociceptin
analgesic effects whereas others report no effect of opioid antagonists
on nociceptin effects (Xu et al., 2000). More recently, two papers
strengthened the case for the spinal antinociceptive effects of
nociceptin by anatomically and functionally linking nociceptin action
to the inhibition of substance P release from primary afferent fibers
(Inoue et al., 2003; Mika et al., 2003).

The putative target of nociceptin action is the NOP receptor in
amphibian spinal cord. Although numerous studies showed that NOP
receptors were expressed in mammalian brain and spinal cord (see
above), there is only a single report of [3H]-nociceptin1–13 amide
binding in amphibians using brain tissue homogenates from the
European water frog, Rana esculenta (Benyhe et al., 1999). These
results showed that the nociceptin analog bound to a single, high-
affinity site with an affinity of 0.55 nM and a density of 180 fmol/mg
protein. More recently, the amphibian NOP receptor was cloned from
two different species, and was shown to be expressed in amphibian
brain and spinal cord (Stevens et al., 2007a; Walthers et al., 2005).
These results, along with the present pharmacological data using NOP
and opioid receptor antagonists, strongly suggest that the antinoci-
ceptive effects of nociceptin and its agonist analogues aremediated by
NOP receptors in amphibian spinal cord.

The relatively weak antinociceptive effect of spinal nociceptin
compared to opioid agonists appears to be conserved in amphibians
and mammals. With regard to differences in the vertebrate opioid
receptors, comparative bioinformatics of all vertebrate opioid-like
sequences suggests that the NOP receptor is the most ancestral of the
four members of the opioid receptor family, with the mu opioid
receptor (MOR) being the most derived (Stevens et al., 2007a). In this
sense, the vertebrate nociceptin system may represent a primitive
endogenous analgesic system later surpassed by the endogenous
opioid system with its more potent opioid receptors. There is some
support for this notion given that the early-evolved sturgeon fish,
Acipenser transmontanus, referred to as a ‘living fossil’, expresses a
hybrid opioid- and nociceptin-like pronociceptin protein (Danielson
et al., 2001).
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